
Supervisory control of differentially flat systems based on abstraction

Alessandro Colombo and Domitilla Del Vecchio

Abstract— The limiting factor in most implementations of
safety enforcing controllers is the model’s complexity, and a
common work-around includes the abstraction of the physical
model, based on differential equations, to a finite symbolic
model. We exploit the specific structure of a class of systems
(the differentially flat systems) to perform the abstraction.
The objective is to construct a supervisor enforcing a set of
safety rules, while imposing as little constraints as possible on
the system’s functionality. An example – a collision avoidance
algorithm for a fleet of vehicles converging to an intersection
– is presented. Our approach improves on previous results by
providing a deterministic symbolic model irrespective of the
stability properties of a system, and by addressing explicitly
the problem of enforcing safety.

I. INTRODUCTION

The problem of controlling multi-agent systems with
safety specifications is often addressed in the framework of
supervisory control of discrete event systems [1], [2]. The
advantage of casting the control problem in this framework
lies in the relative simplicity of formally verifying discrete
event systems, with respect to dealing with geometric con-
straints on sets of differential equations. Additionally, the
discrete event structure couples naturally with the digital
systems that implement the controller. One of the greatest
challenges in this approach resides in finding an efficient
way to map the physical, continuous-time system onto a
discrete event system, without losing too much structure
along the way. Typical solutions involve defining a space and
time discretization of the continuous-time model, restricting
space and input sets so that the discretization is finite, and
then proving an equivalence relation between the discretized
system and a suitable discrete event system. The discrete
event equivalent is then called a finite-state abstraction of
the continuous-time system. Existing works either apply to
incrementally stable systems [3], [4], [5], [7], or obtain
nondeterministic discrete event systems [6]. Moreover, none
of these approaches addresses explicitly the issue of safety
enforcement. An exception is found in [8], where abstrac-
tion techniques for safety enforcement are addressed in the
context of reachability analysis.

In this paper, we exploit the specific structure of an
important class of systems –the differentially flat systems [9],
[10], [12], [11]– to reduce the dynamics of a general model
to that of the trivial system χ̇ = u. We construct a finite-state
abstraction of the trivial system, and use it as the backbone

This work was supported by the NSF Award # CNS 0930081
Alessandro Colombo and Domitilla Del Vecchio are with the Depart-

ment of Mechanical Engineering, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, USA. Email: acolombo@mit.edu,
ddv@mit.edu

for the design of a supervisor. Safety is addressed explicitly
and ensured by construction, irrespective of the chosen
discretization step, so that a coarse discretization can be
used without compromising the specifications. We design the
least restrictive supervisor for the trivial system, and use it to
construct the supervisor for the general model. We provide a
measure of the maximum distance of the trajectories allowed
by the supervisor of the general system and the trajectories
of the trivial system. We also show that by refining the
discretization, the supervisor allows any trajectory that does
not intersect the bad set. Moreover, we provide an upper
bound on the distance of the allowed trajectories of the
general model from the bad set. This distance can be made
arbitrarily small by refining the discretization.

In the text, the symbol ‖ · ‖ denotes the infinity norm of a
vector, a subscripted index (e.g., xi) indicates an element of a
vector, and a superscripted index (e.g., xi) indicates a vector
out of a set of vectors. A superscript between parentheses
(e.g., x(i)) indicates an i-th order time-derivative. Finally,
Conv(·) indicates the convex hull of a set.

The paper is organised as follows: in the next section, we
formalize the problem. In Section III we propose a solution,
and in Section IV we provide details on its numerical
implementation. Then, in Section V we apply our algorithm
to the control of a set of vehicles at an intersection, and we
draw conclusions in Section VI.

II. PROBLEM STATEMENT

We analyse a system of the form

ẋ = f(x, a), y = h(x), (1)

with x(t) ∈ X ⊂ Rm, a(t) ∈ A ⊂ Rn, y(t) ∈ Y ⊂ Rn.
Functions f and h are Ck for sufficiently large k. The vector
x(t) is the state of the system, a(t) is the input, and y(t) is
the output. We assume that (1) is differentially flat [9], [10],
[11], with y as flat output. This means that it satisfies the
following assumption:

Assumption 2.1: Function h has rank n, and there exist
two functions Γ : (Rn)q+1 7→ Rm and Θ : (Rn)q+2 7→ Rn
of rank m and n, respectively, in their domains, such that
the integral curves of (1) identically satisfy the equations

x = Γ(y, ẏ, ..., y(q)), a = Θ(y, ẏ, ..., y(q+1)). (2)
We also require that n(q+ 1) = m, which together with the
rank condition implies that the function Γ is invertible.

Call A, X , and Y the sets of all possible functions of time
a, x, and y, respectively. We assume thatA is the space of Cq

functions of t. We consider the set B ⊂ Y , called the bad set,
and assume that it is the union of a finite number of convex

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 6134

polytopes. This is the setting, for example, of mechanical
systems in the form ẋ1 = x2, ẋ2 = f1(x1, x2)+f2(x1, x2)a,
where the flat output is y = x1, and the bad set is a set of
collision positions.

Let us introduce the flow φt(x(0), a) ∈ Rm of sys-
tem (1), such that φ0(x(0), a) = (x(0)) and x with
x(t) = φt(x(0), a) for all t satisfies equation (1). Let
φ[t1,t2](x(0), a) :=

⋃
t∈[t1,t2] φt(x(0), a). Our objective is

to design a supervisor [1], [2] for system (1) that prevents
trajectories from entering the bad set. This requirement can
be formally expressed using the concept of ε-safe trajectory:

Definition 2.1: A trajectory φ[0,T](x(0), a) with T ∈ R+

is ε-safe provided inft∈[0,T] infb∈B ‖h(φt(x(0), a))−b‖ > ε.
Consider a compact set of initial conditions X0 ⊂ X .

Given a grid with hypercubic cells of side η on the set Y ,
consider a compact set Ȳ ⊂ Y composed of a finite number
of cells, such that for all x(0) ∈ X0, h(x(0)) ∈ Ȳ . For all
x(0) ∈ X0 and a ∈ A, call T (x(0), a) the infimum of the
set {T ∈ R+ : h(φT (x(0), a)) /∈ Ȳ }, and call a(kτ,(k+1)τ]

the signal a restricted to the interval (kτ, (k + 1)τ].
Problem 2.1 (Supervisor design): Determine a map σ :

X 7→ 2A, called a supervisor, depending on the parameter
0 < τ <∞, with the two following properties:

(P.1) For all x(0) ∈ X0 and for all a such that a(kτ,(k+1)τ] ∈
σ(x(kτ)), φ[0,T (x(0),a)](x(0), a) is 0-safe.

(P.2) For all x(0) ∈ X0, if there exist 0 < δ <
∞, −∞ < γl < γu < ∞, and a ∈ A
such that φ[0,T (x(0),a)](x(0), a) is δ-safe and γl ≤
ḣi(φt(x(0), a)) ≤ γu for all t ∈ [0, T (x(0), a)] and for
all i, then there exists a τ∗(δ) > 0 such that, for all τ <
τ∗(δ), there exists an a∗ ∈ A such that a∗(kτ,(k+1)τ] ∈
σ(x(kτ)) and ‖h(φt(x(0), a∗)) − h(φt(x(0), a))‖ < δ
for all t ∈ [0,min(T (x(0), a), T (x(0), a∗))].

Property (P.1) requires that all trajectories allowed by the
supervisor are 0-safe. Property (P.2) requires that, if there
exists a 0-safe trajectory originating at x(0) for input a,
whose output has bounded derivative, then for τ sufficiently
small the output is approximated arbitrarily well by the
output of a 0-safe trajectory allowed by the supervisor.

III. DESIGN OF THE SUPERVISOR

Here, we design a supervisor to solve Problem 2.1. In
Section III-A, we introduce the trivial system, with dynamics
in the output set Y , and design a supervisor for this system.
Then, in Section III-B, we use this result to construct a
supervisor for (1).

A. SUPERVISOR OF THE TRIVIAL SYSTEM

Consider the system

χ̇ = u, (3)

where χ : R 7→ Y is the state trajectory and u : R 7→ U ⊂
Rn is the input. To set the basis for the construction of a
finite-state abstraction, we restrict the input set of (3) to a
finite set, and we construct a finite lattice over the state set
Ȳ . Define U as a set of vectors with elements in uadm :=
{kµ : k ∈ Z}, where µ is a fixed positive constant, and

assume that u is constant over intervals (kτ, (k + 1)τ]. Call
U the set of all such signals u. Consider a regular lattice
G of step η over Ȳ , such that an element of the lattice lies
in the centre of each hypercubic cell composing Ȳ . Let g
denote an element of G. Since both g ∈ G and χ(t) ∈ Ȳ
are elements of Rn, the infinity norm defines a distance for
any pair (g, χ(t)). Clearly, the lexicographical order is a total
order on the elements of G, so that any subset of G has a
unique minimum. Then, define the map ` : Y 7→ G as

`(χ(t)) := min
g∈G
{g : ‖χ(t)− g‖ ≤ η/2}. (4)

In analogy to the previous section, call φt(χ(0), u) and
φ[t1,t2](χ(0), u), t1 < t2, respectively, the flow and tra-
jectories of (3). The concept of ε-safety in Definition 2.1
is extended to trajectories of (3) simply by substituting
the flow φt(χ(0), u) to the function h(φt(x(0), a)). For all
χ(0) ∈ Ȳ and u ∈ U , call T (χ(0), u) the infimum of the set
{T ∈ R+ : φT (χ(0), u) /∈ Ȳ }.

Definition 3.1: A supervisor σC : Ȳ 7→ 2U of (3) is the
least restrictive with respect to ε if for all χ(0) ∈ Ȳ , for
all u ∈ U such that u(t) /∈ σC(χ(kτ)) for k = sup{k :
kτ < t}, there exists a trajectory φ[0,T (χ̃(0),u)](χ̃(0), u) with
`(χ̃(0)) = `(χ(0)) that is not ε-safe.
Our first step consists in solving the following problem:

Problem 3.1: Given the set Ȳ , design the least restrictive
supervisor σC with respect to ε such that for all u ∈ U with
u(t) ∈ σC(χ(kτ)) for k = sup{k : kτ < t}, φ[0,T](χ(0), u)
is ε-safe.

We construct a finite-state abstraction of (3) by considering
its time discretization, called ΣDT , and then constructing an
equivalent finite discrete event system, called ΣDE .

Definition 3.2: Given τ > 0, the time-τ discretization
of (3) is a discrete event system and is denoted ΣDT =
{Y, U, f}, where Y is the state space, U is the input space,
and f : Y × U 7→ Y is the transition function. We call the
state z ∈ Y and the input w ∈ U , to distinguish them from
the state and input functions of (3). Given any z ∈ Y and
w ∈ U , and given u ∈ U such that u(t) = w for all t ∈ (0, τ],
and χ(0) = z, then f(z, w) := φτ (χ(0), u). A transition of
ΣDT is a state/input pair and is denoted (z, w)DT .
We can thus say that a transition (z, w)DT of ΣDT corre-
sponds to a trajectory φ[0,τ](χ(0), u) of (3) if χ(0) = z and
u(t) = w for all t ∈ (0, τ].

Definition 3.3: A finite execution of length m is a
sequence of transitions {(z0, w0), (z1, w1), ...} such that
zi+1 = ψ(zi, wi). To identify an execution of length m,
we introduce the shorthand notation (z0, w0, ..., wm−1)DE .
An execution of arbitrary (finite or infinite) length is
denoted (z0, w0, ...)DE . We also introduce the symbol
ψ(ξ, w0, ..., wm−1) for the terminal state reached by an exe-
cution of length m and ψ(ξ, w0, ...) to indicate the terminal
state reached by a finite execution of arbitrary length.
System ΣDT has an infinite number of states. We use the
concept of bisimulation (see definition in [2]) to prove the
an equivalence of ΣDT and a suitably constructed, finite-
state discrete event system ΣDE . Consider the equivalence

6135

relation ' defined by z1 ' z2 if `(z1) = `(z2), with `
defined in (4), and the partition L of Y that it induces. Use
G as the state set of ΣDE and U as its event set, and define
its transition function by

ψ(g1, w) = g2 iff ∃ z ∈ Y : g1 = `(z), g2 = `(f(z, w)).

Furthermore, set
η = τµ. (5)

Lemma 3.1 (Finite-state abstraction): ΣDT introduced in
Definition 3.2 is bisimilar to ΣDE = {G,U, ψ} with respect
to the relation g ' z if g = `(z).
Notice that our choice of partition ensures that ΣDE is
deterministic, since the dynamics of ΣDT maps elements of
L onto elements of L. We can now define a supervisor for
(3) using the finite-state abstraction ΣDE . First we extend
the concept of ε-safety to transitions of ΣDT and ΣDE .

Definition 3.4: Given a real number ε > 0.
• Take a transition (z, w)DT of ΣDT and the correspond-

ing trajectory φ[0,τ](χ(0), u) of (3), with χ(0) = z and
u(t) = w for all t ∈ [0, τ] . The transition (z, w)DT is
ε-safe if and only if φ[0,τ](χ(0), u) is ε-safe.

• Take ΣDE = {G,U, ψ} bisimilar to ΣDT = {Y, U, f}.
Consider a single transition (g, w)DE of ΣDE . The
transition (g, w)DE is ε-safe provided (z, w)DT with
z = g is an (ε+ η/2)-safe transition of ΣDT

The definition of ε-safety of a transition is extended to ε-
safety of executions of ΣDE as follows.

Definition 3.5: The execution (g, w0, ...)DE is ε-safe if
and only if all the transitions that compose it are ε-safe.

The above definitions imply the following
Lemma 3.2: ((g, w)DE is ε-safe) implies that for all

χ(0) ∈ Ȳ such that `(χ(0)) = g, φ[0,τ](χ(0), u) with
u(t) = w for t ∈ (0, τ] is ε-safe.

We now define the supervisor σC , using the concept of
forward-maximal executions, defined as follows.

Definition 3.6: An execution of finite length
(g0, w0, ..., wm−1)DE is forward-maximal if
ψ(g0, w0, .., wm−n) ∈ G for all n ∈ {2, ...,m}, and
ψ(g0, w0, .., wm−1) /∈ G. An execution (g0, w0, ...) of
infinite length is always forward-maximal.
Consider the following set of all ε-safe forward-maximal
executions:

S := {(g, w1, ...)DE : g ∈ G, (g, w1, ...)DE is ε-safe,
and (g, w1, ...)DE is forward-maximal}.

(6)
The supervisor σC is defined as

σC(z) := {w : ∃ (`(z), w, ...)DE ∈ S}. (7)

Theorem 3.3: Problem 3.1 is solved by σC .
Proof: By definition of σC and S, the trajectory

φ[0,τ](χ(0), u) with u(t) ∈ σC(χ(0)) for all t ∈ (0, τ]
corresponds to a transition (z0, w0)DT with z0 = χ(0) and
w0 = u(τ) which, by the bisimilarity of ΣDT and ΣDE ,
corresponds to the first transition of an ε-safe execution
(`(z0), w0, ...)DE ∈ S. Hence, by Lemma 3.2 the trajectory
is ε-safe, and the state `(φτ (χ(0), u)) belongs to an execution

in S. Since all executions in S are forward-maximal, any
sequence of such trajectories is ε-safe as long as it remains
in Ȳ . Thus the supervisor (7) solves Problem 3.1.

We are left to show that the supervisor is the least-
restrictive. We proceed by contradiction. Consider an input
signal u ∈ U such that u(t) /∈ σC(χ(kτ)), k = sup{k : kτ <
t}, for some t ∈ [0, T (χ(0), u)]. Assume that all trajectories
φ[0,T (χ(0),u)](χ̃(0), u), with `(χ̃(0)) = `(χ(0)), are ε-safe.
Applying Lemma 3.2 to each segment of length τ of each tra-
jectory we conclude that the execution (`(z), w0, w1, ...)DE ,
where w0 = u(t) in the interval (0, τ], w1 = u(t) in the
interval (τ, 2τ], etc., is ε-safe and forward-maximal, which
contradicts the hypothesis that u(t) /∈ σC(χ(kτ)).

B. SOLUTION OF PROBLEM 2.1

To solve Problem 2.1 we need to find a map from the
inputs u of system (3), to the inputs a of system (1). For
the supervisor to enforce safety, this map must ensure that
outputs y = h(φ[0,t](x(0), a)) of (1) follow closely the
trajectories φ[0,t](χ(0), u) of system (3). Here, we exploit
the fact that y is a flat output for system (1), hence by virtue
of (2) we can design a path in y, and map it onto signals a
and x satisfying (1) and (2).

Having set χ(0) = h(x(0)), for t ∈ (kτ, (k+1)τ] we con-
struct y(t) = c0 +c1(t−kτ)+ ...+c2q+1(t−kτ)2q+1 taking
the coefficients c0, ..., c2q+1 so that y is Cq everywhere and
passes through the points χ(kτ) = φkτ (χ(0), u), k ∈ N, at
t = kτ . Since the supervisor is causal, we must determine the
coefficients using only the value x(kτ) = φkτ (x(0), a) with
k = sup{k : kτ < t}. For a given u(t) = ũ ∈ σC(x(kτ)),
the coefficients c0, ..., cq are obtained by using the first
equation of (2), by imposing that

lim
t→kτ

(y(t), ẏ(t), ..., y(q)(t)) = Γ−1(x(kτ)). (8)

The coefficients cq+1, ..., c2q+1 are obtained by imposing the
following q + 1 conditions at the boundary t = (k + 1)τ :

y((k + 1)τ) = h(x(kτ)) + τ ũ
ẏ((k + 1)τ) = ũ
y(2)((k + 1)τ) = ... = y(q)((k + 1)τ) = 0.

(9)

Notice that, since χ(kτ) = h(x(kτ)) and u(t) = ũ, the
polynomial above indeed passes through the point χ((k +
1)τ) = h(x(kτ)) + τ ũ at time (k + 1)τ . Moreover, (8)
properly ensures that y ∈ Cq . Finally, since the polynomials
composing y have coefficients and domain in a compact set,
the quantity

εa = sup
u∈U,k∈N,t∈[kτ,(k+1)τ]

‖y(t)− φt(χ(0), u)‖, (10)

with y(0) = χ(0), which is the maximum distance of y(t)
from χ(t), is finite.

Let us define

σ(x(kτ)) := Θ(y(t)), ẏ(t), ..., y(q+1)(t)), (11)

for t spanning the set (kτ, (k+ 1)τ]. Here, y(t) on the right
hand side is given by (9), and ũ is set by σC .

6136

Theorem 3.4 (Main result): Setting ε > εa and construct-
ing σC to enforce ε-safety, with uadm such that [γl, γu] ⊂
Conv(uadm), the supervisor (11) solves Problem 2.1.
From the supervisor construction it follows trivially that σ
satisfies P.1 of Problem 2.1. To prove that it also satisfies
P.2, we first need to prove two lemmas.

Lemma 3.5: Consider −∞ < γl < γu < ∞, a ∈ A,
and x(0) ∈ X0 such that γl < ḣi(φt(x(0), a)) < γu for all
t ∈ [0, T (x(0), a)] and for all i ∈ {1, ..., n}. Let χ(0) =
h(x(0)) and assume that [γl, γu] ⊂ Conv(uadm). Then for
τ → 0 there exists a uτ ∈ U such that ‖φt(χ(0), uτ) −
h(φt(x(0), a)))‖ ≤ τ(γu − γl)/2.

Proof: [sketch] In the case γu = −γl = γ > 0, the
lemma is proved by induction on k. Call x(t) = φt(x(0), a)
and χ(t) = φt(χ(0), u). The base case is true by assumption,
as χ(0) = h(x(0)), and the induction step requires to prove
that if ‖χ(kτ)− h(x(kτ))‖ < γτ , then ‖χ(t)− h(x(t))‖ <
γτ in the interval (kτ, (k+1)τ]. This is done taking, for each
given τ , each component uτi of uτ in the interval (kτ, (k +
1)τ] with the following rule:

(i) If χi(kτ) ≤ hi(x((k + 1)τ)) then uτi (t) = γ
(ii) If χi(kτ) > hi(x((k + 1)τ)) then uτi (t) = −γ.

The case of generic γl and γu follows by defining γ =
(γu − γl)/2, and subtracting t(γu + γl)/2 from both χ(t)
and h(x(t)).

Lemma 3.6: Consider y defined by (8) and (9), interpo-
lating χ at the points χ(kτ), k ∈ N. Then, ‖y − χ‖ ≤ Cτ
for some C > 0.

Proof: The component l of y is

yl(t) =

2q+1∑
i=0

ci(t− kτ)i, t ∈ (kτ, (k + 1)τ] (12)

with ci ∈ R. From (8) we see that c0, ..., cq are functions
of x(0) when k = 0. In the following intervals instead,
(9) together with the Cq-continuity ensured by (8) imply
that c0 = hl(x(kτ)), c1 = ḣl(x(kτ)), and c2, ..., cq = 0.
Thus, these coefficients are always independent of τ . The
coefficients cq+1, ..., c2q+1 are obtained by solving the linear
system (9), which has form M(τ)C = V (τ) where M
is a matrix function of τ , C is the vector of coefficients
cq+1, ..., c2q+1, and V (τ) is a vector function of τ and of
c0, ..., cq , h(x(kτ)), and ũ. Now consider τ → 0. Exploiting
the form of M it is easy to prove that the element i, j of
M−1 is mi,j = O(τ−q−1+j−i), while for the elements j
of V it holds v1 = O(τ), vj = O(1) for j > 1. Thus,
cq+i =

∑q+1
j=1mi,jvj = O(τ−q−i+1) for i ∈ {1, ..., q + 1}.

Writing ci(t − kτ)i = c̃iλ
i with λ = (t − kτ)/τ ∈ [0, 1]

and c̃i = ciτ
i, (12) becomes yl =

∑2q+1
i=0 c̃iλ

i where c̃0 =
c0 = h(x(kτ)), and c̃i = O(τ) for all i ∈ {1, ..., 2q + 1}.
Now, since χl(t) = h(x(kτ)) + (t − kτ)ũl in the interval
(kτ, (k+1)τ], ‖yl(t)−χl(t)‖ = O(τ). This reasoning applies
for all components of y and χ, and in particular applies
to supu∈U,t>0 ‖y(t) − χ(t)‖, which is finite as we have
established in (10). Thus, ‖y − χ‖ ≤ Cτ for some C > 0.

We can now prove that the supervisor σ satisfies Property
(P.2).

Proof: (Theorem 3.4) For a given x(0) ∈ X0, take
δ > 0, and assume there exist −∞ < γl < γu < ∞ and
a ∈ A such that φ[0,T (x(0),a)](x(0), a) is δ-safe and γl <

ḣi(φt(x(0), a)) < γu for all t ∈ [0, T (x(0), a)] and for all i.
By Lemma 3.5, there exists a u ∈ U such that ‖φt(χ(0), u)−
h(φt(x(0), a))‖ < τ(γu−γl)/2, with χ(0) = h(x(0)). Using
Lemma 3.2 we conclude that, if φ[0,T (x(0),a)](x(0), a) is δ-
safe, then φ[0,T (χ(0),u)](χ(0), u) is allowed by a supervisor
σC that ensures ε-safety with ε ≤ δ− τ(γu− γl)/2− η. The
quantity η = τµ is defined in (5). From Lemma 3.6, we also
know that εa ≤ Cτ for some C > 0. Hence, a supervisor
satisfying (P.2) must have ε ≥ Cτ . The supervisor exists as
long as Cτ < δ − τ(γu − γl)/2 − τµ, that is, as long as
τ(C + (γu− γl)/2 +µ) ≤ δ, which is always possible for τ
sufficiently small. Finally, as τ → 0, φ[0,T (χ(0),u)](χ(0), u)
converges uniformly to h(φ[0,T (x(0),a)](x(0), a)) for t ∈
[0,min(T (x(0), a), T (x(0), a∗))], and y converges uni-
formly to φ[0,T (χ(0),u)](χ(0), u). Setting a∗ = Θ(y, ẏ, ...),
then y(t) = h(φt(x(0), a∗)) by flatness, so for suffi-
ciently small τ the input a∗ ensures that ‖h(φt(x(0), a∗))−
h(φt(x(0), a))‖ < δ.
Additionally, we provide an upper bound on the distance of
the output y of the allowed trajectories in Ȳ and the bad set:

Theorem 3.7: Place the elements of uadm in increasing
order and define δ as the maximum distance between two
successive elements. Assume that for a given x(0) ∈ X0

A.1 σ(x(0)) 6= ∅
A.2 there exists a u(t) ∈ U and a correspondng y(t) of the

form specified in (9) and (8), with y(0) = h(x(0)), such
that y(t) ∈ B for some t ≥ 0.

Then, for sufficiently large Ȳ there exists a ∈ A such that
a((kτ, (k + 1)τ]) ∈ σ(φkτ (x(0), a)) for all k ≥ 0, and

min
t∈[0,T (x(0),a))

min
b∈B
‖h(φt(x(0), a))− b‖ ≤ 2ε+ δτ.

By refining the abstraction, reducing τ and ε the supervisor
σ allows trajectories that pass arbitrarily close to the bad set.

Proof: [Sketch] Call S the family of all forward-
maximal executions of ΣDE with initial condition g =
`(h(x(0)). One first shows, using assumptions A.1 and A.2,
that there exists two executions in S such that
• the first has transition s ∈ N as first non-safe transition,
• the second is ε-safe,
• the input sequences of the two executions are identical

up to transition s except at one step, where the input
value differ by at most δ.

Reasoning on the distance between the trajectories corre-
sponding to the ε-safe execution and the ones corresponding
to non-safe one completes the proof.

IV. NUMERICAL IMPLEMENTATION
Here, we shall provide an algorithm to implement σ

numerically. The main challenge is the implementation of
the map σC , since its output is readily translated into a set of
output signals a through an algebraic mapping. Determining
σC , in turn, requires to determine the set S.

6137

Let us consider the set S̄ of all possible executions of
ΣDE : S̄ := {(g, w, ...)DE : g ∈ G}. The set S defined
in (6) is the subset of S̄ of all forward-maximal executions
that are ε-safe. This suggests a way to construct S: given
S̄, we can first remove all the executions that are not
ε-safe, obtaining the subset Ŝ := {(g, w, ...)DE : g ∈
G and (g, w, ...)DE is ε-safe}, and then remove from Ŝ all
executions that are not forward-maximal. This process can be
implemented in a simple way by viewing the three sets S̄, Ŝ
and S as the sets of all possible paths in three directed graphs,
named S̄G, ŜG and SG, respectively. Nodes in the three
graphs are states in G, while edges are transitions. The first
step –obtaining ŜG from S̄G– is executed by checking, for
each transition (g, w)DE ∈ S̄, if the trajectory φ[0,τ](χ(0), u)
with χ(0) = g and u(t) = w in (0, τ] intersects an (ε+η/2)-
neighbourhood of B. A point χ(0) belonging to a convex
polytope composing B verifies an inequality of the form
Aχ(0) < 0, with A a p × n matrix, where p is the number
of faces of the polytope and n the size of vector χ(0).
The intersection of a trajectory φ[0,τ](χ(0), u), u(t) = ũ,
with any polytope is then detected by checking whether the
inequality A(χ(0) + tũ) < 0 has solutions for t ∈ [0, τ].
This conditions must be checked for each polytope, for each
possible transition, and for each g ∈ G, thus the complexity
of the intersection checking grows linearly with the number
of states in G and transitions per state.

The second task –obtaining SG from ŜG– is accomplished
by iteratively removing edges that reach a node with no out-
going edges. The map σC(χ(kτ)) is then readily evaluated,
finding the node of the graph that corresponds to `(z) with
z = χ(kτ), and returning the values w corresponding to the
outgoing edges of node `(z). Map σ is found using (11).

Assume that the discretization of X has s elements in each
direction. If X ⊂ Rn and U has cardinality m, the number
of nodes in the graph is sn, the number of possible edges
per node is mn. Checking which transitions intersect the bad
set B thus has complexity O((sm)npn) where p, introduced
above, is the number of faces of the polytopes composing B.
Removing nodes with no outgoing edges has, in the worst
case, quadratic complexity in the number of nodes (sn), so
the worst case complexity is O(s2n). Notice that for a given
system the computation of the set S, which constitutes the
bulk of the algorithm, can be completed offline, reducing the
online part of the control algorithm to a simple table lookup.

V. EXAMPLE
Consider a set of n vehicles travelling in straight lines

along m roads that intersect at a common point, as in
the example in Fig. 1. A vehicle’s position at time t is
represented by x1i (t) ∈ R, i ∈ {1, ..., n}. The set of indices
{1, ..., n} of x1 can be partitioned into m sets ∆k, k ∈
{1, ...,m}, where k indicates the road along which vehicle
i is travelling. If i ∈ ∆k and j ∈ ∆k, then vehicles i and
j travel along the same road (e.g., in Fig. 1 indices 1 and 2
are in ∆1, indices 3 and 4 in ∆2 and ∆3, respectively). The
set of vehicles obeys the law

ẋ1 = x2, ẋ2 = a− k(x2)2, (13)

Fig. 1. Four vehicles on three roads. The quantities x1i (t) represent the
positions of the four vehicles at time t.

where the term −k(x2)2, with k > 0, models air drag, while
static friction can be embedded in the input a through a
simple change of variables. This is a flat system with flat
output y = x1 and

(x1, x2) = Γ(y, ẏ, ..., y(q)) = (y, ẏ)
a = Θ(y, ẏ, ..., y(q+1)) = y(2) + kẏ2.

(14)

Our objective is to design a control law that prevents vehicle
collisions, while ensuring that all vehicles pass the intersec-
tion and that their velocities remain nonnegative. States in
the bad set satisfy one of two sets of inequalities. The first
one is used for two vehicles, i ∈ ∆k and j ∈ ∆l, driving
along two different roads, where yi(t) ∈ [αk, βk] if vehicle
i is in the intersection. Then a collision occurs if

∃ i ∈ ∆k, j ∈ ∆l, k 6= l such that αk < yi(t) < βk
and αl < yj(t) < βl, αk, αl, βk, βl ∈ R. (15)

The second condition is used for two vehicles driving on the
same road. Let d ∈ R be the minimum safe distance between
vehicles i and j. Then, a collision occurs if

∃i, j ∈ ∆k such that − d < yi(t)− yj(t) < d. (16)

An output y ∈ B if (15) or (16) is satisfied. The control
problem is solved once each vehicle i ∈ ∆k passes a
predetermined position pi, where pi ≥ βk. We take Ȳ such
that each yi ∈ [yi,min, yi,max], yi,min, yi,max ∈ R, making
sure that yi,max > pi. The set X0 is taken so that its image
through h is equal to Ȳ , while the variables vi are restricted
to the interval [1, 4].

We shall assume that x1 and x2 are continuous signals,
while a can be only piecewise continuous. This implies
that y satisfying (14) must be of class C1. We can thus
approximate each trajectory φ[kτ,(k+1)τ](χ(kτ), u), with a
cubic polynomial with the following boundary conditions:

limt→kτ y(t) = x1(kτ), y((k + 1)τ) = x1(kτ) + τu(t)
limt→kτ ẏ(t) = x2(kτ), ẏ((k + 1)τ) = u(t).

Solving the above equations, the signal y is given by

y(t) = x1(kτ) + tx2(kτ)− 2t2

τ
(x2(kτ)− u(t))+

t3

τ2 (x2(kτ)− u(t)), kτ < t ≤ (k + 1)τ.

We set uadm = {1, 2, 3, 4}, which with the equation above
ensures that x2 is nonnegative, while α = 1 and β = 2 for
all vehicles, d = 1, η = 1, µ = 1, and τ = 1. The state set

6138

Fig. 2. The components of the trajectory of 4 cars on 3 roads (top),
with α = 1, β = 2 (equal for all cars), d = 1, η = 1. The gray area
is the crossing α < x1i < β. Two components corresponding to vehicles
on different roads must never be simultaneously in the crossing, and two
components corresponding to vehicles on the same road must never be closer
than d = 1. The initial conditions are: x1i (0) = (0,−1.5,−3.5,−5),
x2i (0) = (1, 1, 4, 4)

G of ΣDE is a lattice over the set Y of the positions of all
vehicles, and a transition exists from g1 ∈ G to g2 ∈ G if
there is a vector u with ui ∈ uadm such that g2 = g1 + uτ .

One can easily prove that

supu∈U supt>0 infs>0 ‖y(t)− φs(χ(0), u)‖ <
supu∈U supt>0 ‖y(t)− φt(χ(0), u)‖ ≤
supu∈U

∥∥x2(0)− u(τ)
∥∥ 4τ

27
< 0.45.

Thus εa < 0.45. If σC ensures 0.45-safety, the supervisor
σ ensures 0-safety. We have applied the algorithm detailed
above to the case of 4 vehicles driving along 3 roads. The
different components of the trajectory of (13) are portrayed
in Figure 2. The trajectories lie outside of the bad set as
long as any two components corresponding to vehicles on
different roads are never in the gray region simultaneously,
and any two components corresponding to vehicles on the
same road maintain a distance greater than d = 1.

VI. CONCLUSION

We have proposed an algorithm for the supervisory control
of differentially flat systems, using model abstraction. By
merging the trajectory planning techniques allowed by the
flatness property of our system, and the abstraction approach,
we have obtained an algorithm that can handle relatively
large systems, yet it provides guarantees on the safety of
the allowed trajectories. Our approach starts by considering
a simple system living in the set of the flat output variables
(the trivial system (3)). We construct an abstraction of this
system, which by virtue of the simple dynamics can be
made deterministic, and design a supervisor based on the
abstraction. The control inputs allowed by the supervisor are
then mapped back onto the original model using flatness. The
allowed trajectories are safe by construction. The algorithm
can be applied to differentially flat systems in the form
specified in Section II, as long as the bad set is expressed in
terms of the output variables. The bad set is an arbitrary but
finite union of polytopes.

Unlike previous approaches [7], [3], [4], [5], [6], our
technique provides a deterministic abstraction without re-
quirements on the system’s stability. This is a definite advan-
tage when the complexity of the abstraction is a bottleneck.
Moreover, unlike all these approaches our algorithm provides
safety guarantees for the allowed trajectories.

Our approach is similar to a roadmap-based motion plan-
ning algorithm [13]. However, rather than a single trajectory,
our algorithm provides a set of acceptable trajectories. Since
the supervisor σC defined in (7) is the least restrictive, this is
the largest possible set of trajectories for the trivial system,
given the chosen discretization. Moreover, we can provide a
minimum distance between the allowed trajectories and the
bad set, that can be made arbitrarily small by refining the
space and time discretization steps.

With our approach, we have reduced the computational
burden of safety control of a continuous-time system. We
have succeeded by shifting the problem to a discrete one.
The complexity is exponential, but since the abstraction
is finite the solution is tractable, whereas known solutions
by standard control methods in the continuous domain are
prohibitive. A decisive step forward will be the exploitation
of the geometric and dynamic properties of a system to
reduce the complexity class of the discrete algorithm.

REFERENCES

[1] P. J. Ramdage and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Contr. Opt., vol. 25, pp. 206–230,
1987.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Springer-Verlag, 2008.

[3] P. Tabuada, “An approximate simulation approach to symbolic con-
trol,” IEEE Trans. Autom. Control, vol. 53, pp. 1406–1418, 2008.

[4] ——, Verification and control of hybrid systems. Springer-Verlag,
2009.

[5] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar sym-
bolic models for incrementally stable switched systems,” IEEE Trans.
Autom. Control, vol. 55, pp. 116–126, 2010.

[6] M. Zamani, G. Pola, M. Mazo Jr., and P. Tabuada, “Symbolic
models for nonlinear control systems without stability assumptions,”
arXiv:1002.0822v3, 2010.

[7] M. Broucke, M. D. Di Benedetto, S. Di Gennaro, and A. Sangiovani-
Vincentelli, “Efficient solution of optimal control problems using
hybrid systems,” SIAM J. Contr. Opt., vol. 43, pp. 1923–1952, 2005.

[8] R. Alur, T. Dang, and F. Ivancic, “Predicate abstraction for reachability
analysis of hybrid systems,” ACM Trans. on Embedded Computing
Systems, vol. 5, pp. 152–199, 2006.

[9] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: Introductory theory and examples,” Int. J. Control,
vol. 6, pp. 1327–1361, 1995.

[10] M. van Nieuwstadt, M. Rathinam, and R. M. Murray, “Differential
flatness and absolute equivalence of nonlinear control systems,” SIAM
J. Contr. Opt., vol. 36, pp. 1225–1239, 1998.

[11] J. Lévine, Analysis and control of nonlinear systems: A flatness-based
approach. Springer, 2009.

[12] P. Tabuada, “Flatness and finite bisimulations in discrete time,” in Six-
teenth International Symposium on Mathematical Theory of Networks
and Systems, 2004.

[13] J. C. Latombe, Robot motion planning. Kluwer Academic Publishers,
1991.

6139

